2250^2=2000^2+b^2

Simple and best practice solution for 2250^2=2000^2+b^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2250^2=2000^2+b^2 equation:



2250^2=2000^2+b^2
We move all terms to the left:
2250^2-(2000^2+b^2)=0
We add all the numbers together, and all the variables
-(2000^2+b^2)+5062500=0
We get rid of parentheses
-b^2+5062500-2000^2=0
We add all the numbers together, and all the variables
-1b^2+1062500=0
a = -1; b = 0; c = +1062500;
Δ = b2-4ac
Δ = 02-4·(-1)·1062500
Δ = 4250000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4250000}=\sqrt{250000*17}=\sqrt{250000}*\sqrt{17}=500\sqrt{17}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-500\sqrt{17}}{2*-1}=\frac{0-500\sqrt{17}}{-2} =-\frac{500\sqrt{17}}{-2} =-\frac{250\sqrt{17}}{-1} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+500\sqrt{17}}{2*-1}=\frac{0+500\sqrt{17}}{-2} =\frac{500\sqrt{17}}{-2} =\frac{250\sqrt{17}}{-1} $

See similar equations:

| 9y+5-8=30 | | X(2x-7)(3x+1)=(2x-5)(3x+2) | | T(x)=42-29x | | 4^(x-2)=7 | | 5d-2d+2=11 | | 6x−2=14+2x | | 3x-19=4x+6 | | 4/1.2=9/x | | 8x=77−3x | | 8(8t+1)-12=t-(t+3) | | t+(t+6)+(t-2)=31 | | 4x=60−2x | | 5^2x-7=125 | | 12(x+2)=8(13-x) | | -3x-12=-5x-24 | | -2x-2=-5x+22 | | 4x^2=2x^2+5x+3 | | 5w/3=15 | | 18=3/5y | | x=9-3/3*5+10 | | 7u/2=56 | | 9/a=12 | | 6+7y=5+12y | | -3.1x=-12.4 | | 2/9(d)=10 | | 1/2x+6=19 | | 10-8y=7+11y | | 2/3w-7/5=-1/2 | | 11.6+x-7.7=4.4 | | y+4*7,5=y-7,5 | | -3+2y=5y | | 162)3^x-2)=48 |

Equations solver categories